
he Data Server is the central archive within the TransGuide environ-
ment for storing the data necessary to support the TransGuide ATMS
operations and the MDI projects. Storing the data collected and utilized
by the TransGuide system in a central common location allows the
MDI projects to access the information they need seamlessly. The Data
Server (illustrated in Figure 1) is developed around the concept of Data
Generators, which supply data, and Data Consumers, which access
the data.

2.1 Overview

The Data Server is not a traditional database. Instead, the data are
stored in shared memory and in flat files. Data of limited and known
size, such as speed data from the various types of TransGuide
segments, are stored in shared memory. Data of varying sizes, such as
ATMS incidents and lane closures, are stored in files. The Data Server

3

2.0 Data Server

T
Figure 1. Data Server Conceptual Design

Ambulance

Police

Data Generators Data Consumers

TransGuide
Data Server

AVI Reader/Modem

Intelligent Vehicle Identification

AVI Tag

338964554

65456879563

3456744378

324568901

008867890

9769987463

0987567890

4311346579

Police

Road
Closed

C
 R

 O
 S

 S
 I

 N
 G

R
 A I L

W
 A Y

C
 R

 O
 S

 S
 I

 N
 G

R
 A I L

W
 A Y

The Data Server is
developed around the

concept of Data
Generators, which

supply data, and Data
Consumers, which

access the data.

can also store files for later retrieval. In addition to
traffic data, the Data Server receives a heartbeat
message (i.e., a health and status message) from
each of the MDI subsystems, and stores these data
in shared memory.

Data Consumers can request the data and files
sent to the Data Server by the Data Generators. The
MDI System Status Graphical User Interface (GUI)
accesses the heartbeat messages and other status
information at regular intervals and displays them
to the Traffic Operations Center personnel. This sta-
tus GUI allows the user to determine the overall
status of the MDI subsystems at a glance. Each sub-
system has a display area on the GUI, which allows
the user to get a detailed status of that subsystem.

2.2 Design Information

The Data Server is implemented by a number
of processes executing on a Sun Microsystems
Workstation. The following sections provide design
details of the Data Server implementation.

2.2.1 Data Server Architecture

The Data Server design is based on a concept of
Data Generators, which supply data to the system,
and Data Consumers, which utilize these data. These
Data Generators and Data Consumers can be internal
or external to the system.

Some of the external Data
Generators were developed
specifically for the MDI pro-
ject, while others were pre-
existing applications. To avoid
modifying the pre-existing
applications, interface applica-
tions were developed for the
external Data Generators.

To simplify the interface
between the Data Server and
the Data Generators or Data
Consumers, a common library
was developed that contains
the functions needed to com-
municate with the Data Server.
The library includes functions
to send status information,
traffic data, incident data,
equipment data, and files to

the Data Server. The library also includes functions
to request traffic data, incident data, equipment
data, and files or file-related information. By pro-
viding a common library to perform these tasks,
system reliability and maintainability are
improved. Any changes to the Data Server that
affect the libraries need to be updated only once in
the common library function, instead of in every
application that communicates with the Data
Server.

To increase the reliability of the Data Server,
each individual Data Consumer, Data Generator,
and external interface application is developed as a
separate, independent module. This concept
enables new Data Generators or Data Consumers
to be added or existing ones to be updated with
minimal impact. In addition, any failure in one
module will probably not affect the others.

Figure 2 illustrates the Data Server data flow.
The common library is shown in the figure as
Application Program Interfaces (APIs).

2.2.2 Core Data Server Design

The core Data Server is the central module of
the Data Server subsystem. It creates and maintains
a common memory area, where it stores traffic data
and status information about the various MDI sys-
tems. The Data Server also stores, retrieves, and

4

Data Generator
APIs

Data Generator
APIs

Data Generator
APIs

Data Consumer
APIs

Data Consumer
APIs

Data Consumer
APIs

Data Generator
APIs

Data Server

Optional

APIs
Real-Time
Broadcast

Data

Data Server
Common Memory

Figure 2. Data Server Data Flow

maintains information in files. Data of a known
size, such as traffic speeds and system status, are
stored in the common memory area. Traffic data of
variable sizes, such as traffic incident information,
are stored in files. Data Generators can also send
files to be stored by the Data Server for future
retrieval by Data Consumers. These files can be in
any format because the Data Server does not access
them other than to store them, retrieve them,
retrieve directory information about them, or
delete them.

Traffic congestion data are dynamic. Traffic
incidents that occurred several hours ago are typi-
cally not pertinent to current traffic information.
Therefore, the Data Server maintains only the most
recent data. When the Data Server receives new
speed data, it overwrites any previous speed value
for the same road segment. When traffic incident
data are received, the Data Server replaces any data
from the same incident source (ATMS, 911, Lane
Closures). In the case where the data source has
failed to update the data within the expected time
period, the Data Server uses an aging process to
prevent old data from remaining in the system. For
non-ATMS road segments, this process will set the
status of the road segment to inactive and its speed
to zero.

The core Data Server also starts and monitors
the status of the Data Generators, Data
Consumers, and interfaces that are part of the
Data Server subsystem. This status is
stored in a common memory area,
which can be accessed by the MDI
overall Status GUI (Figure 3). This
Status GUI displays the current status
of the MDI subsystems, allowing an
user to determine at a glance the over-
all condition of the system. A color-
coded status shows green when the
subsystem has no errors, yellow when
it is in a warning state, red when an
error has occurred, and gray when the
subsystem is not operating. The user
can view the process status of each
individual subsystem by selecting a
button on the subsystem’s status win-
dow. Some subsystems have detailed
status windows that can be accessed
from the subsystem’s process status
window.

The process status GUI for the Data Server
subsystem is shown in Figure 4.

5

Figure 3. Overall Model Deployment Initiative Status
Graphical User Interface

Figure 4. Data Server Process Status Graphical User Interface

6

2.2.3 Real-Time Subsystem Design

The Real-Time Subsystem (Figure 5) is the com-
ponent of the Data Server system that interfaces
with the real-time traffic data. These data are
received from the ATMS by the Real-Time Collec-
tion application and stored in the Data Server com-
mon memory. The Real-Time Broadcast application
retrieves these data in addition to AVI, Global
Positioning System (GPS), 911, and Lane-Closure
data from the common memory and broadcasts the
data over the network. This broadcast can then be
received by the Real-Time Receive application,
which may run on one or more workstations con-
nected to the network. An application, such as the
Real-Time Map Display, can read the data stored by
Real-Time Receive, and display it to a user wishing
to see the current traffic speeds and traffic inci-
dents.

2.2.4 911 Interface Design

The 911 interface receives traffic information
from the San Antonio Police Department’s 911 Data
Dispatch and processes it before passing it on to
the Data Server. The 911 data contains traffic acci-
dents (minor and major) and other traffic-related
incidents. Only accident-related information is sent
to the Data Server. The 911 traffic accident data
contain information about the accident such as type

of accident, the time it occurred, and the geographic
location. These data are converted into a standard
MDI incident format and sent to the Data Server.
The Real-Time Subsystem retrieves the incident
information stored in the Data Server and broad-
casts it on the TransGuide network. Other pro-
grams, such as the In-Vehicle Navigation (IVN)
System, can use this incident information when
making route guidance decisions. The geographic
location information in the incident data also
allows an incident icon to be displayed on the
Geographical Information System (GIS) in the loca-
tion at which it occurred.

2.2.5 Global Positioning System and Theoretical
Data Subsystem Design

The GPS and Theoretical Data Subsystem is a
Data Generator that supplies data to the Data
Server. It retrieves traffic data from a database for
road segments for which GPS and Theoretical data
have been collected. GPS data are actual travel time
data collected from GPS-equipped probe vehicles.
Theoretical data are calculated using historical
travel-time data combined with road characteris-
tics. The database contains expected travel speeds
for every 15-minute interval of each day of the
week, for the selected road segments. The speed
data are used to update the estimated travel speeds
for the segments in the Data Server. Weather,

ATMS Data
Collection

Real-
Time Data
Collection

GPS

Lane
Closure

AVI

One Per Workstation

Real-Time
Broadcast

Real-
Time Receive

Process

911 Data
Collection

SA Police
Mainframe

Data Generator APIs

Data Server
Common Memory

Data Consumer APIs

Data Server

Figure 5. Real-Time Subsystem

school, and holiday information about the current
day determines the values of a set of parameters
used to adjust these speeds before they are trans-
mitted to the Data Server.

Two GUIs were developed to facilitate entering
the school, holiday, and weather attributes for indi-
vidual dates or a range of dates. Using the
Calendar GUI, school and holiday information can
be entered up to a year in advance into a calendar
file that is read each day at midnight to update the
values for the current day. Another GUI allows the
user to change these parameters for the current
day. This GUI is mainly used to factor weather con-
ditions into the traffic speeds for the GPS and
Theoretical data segments.

2.2.6 File Transfer Design

The File Transfer process is a Data Generator
that supplies data in the form of files to the Data
Server. It is configurable to transfer weather files,
VIA files, or highway condition files depending on
the configuration values specified at startup. The
source directory path, update frequency, and file
type are among the configurable parameters.

At the specified intervals, the File Transfer
process checks if any files in the source directory
have been updated. The updated files are retrieved
and sent to the Data Server where they are stored.

2.2.7 Real-Time Map Display Design

The Real-Time Map Display is based on the
concept of intelligent map objects that contain geo-
graphic and attribute information for the object.
The intelligent map objects are read in from a dis-
play file at startup. The Real-Time Map Display
gets the real-time traffic information from the Real-
Time Receive application. Real-Time Receive
receives the data broadcast by Real-Time Broadcast
onto the TransGuide network. These data are
stored and can be requested asynchronously by
applications such as the Real-Time Map Display.
The traffic data contain speeds from ATMS seg-
ments, AVI segments, GPS segments, and
Theoretical Data segments. ATMS incidents, 911
incidents, lane closure information, and MDI
equipment information are also contained in the
data feed.

The Real-Time Map Display draws the map
based on the data in the display file. At regular
intervals, the application reads the current speed,
incident and equipment information and uses the
data to update the map. The lane colors are deter-
mined based on the current speed and speed
threshold settings—green is normal, yellow is
warning, and red is alarm. The equipment icons
and colors are determined by the current equip-
ment status.

The user can obtain detailed speed, equipment,
and incident information by clicking on a road seg-
ment or on an equipment or incident icon. This
action causes a pop-up window to be displayed
with a graphic representation of the selected lane’s
speed or detailed information about the status of
the selected equipment or incident.

The user can also perform the following func-
tions while viewing the Real-Time Map Display:

• Zoom the map display
• Scroll the map display
• Select one of two predefined views
• Show or hide lane closures
• Show or hide 911 incidents
• Show or hide MDI road segments
The Real-Time Map Display is also used to dis-

play the three map views on the video wall in the
TOC. When operating in the video wall mode, the
map display rotates between three predefined
views that change at one-minute intervals.

2.2.8 World Wide Web Subsystem Design

The World Wide Web (WWW) subsystem runs
on the TransGuide web server at the address
http://www.transguide.dot.state.tx.us/map/. The
server receives the Real-Time broadcast feed from
the TransGuide network and uses these traffic data
to update the road segments, lane closures, and
traffic incidents that it displays. The WWW map
displays real-time traffic speeds for ATMS and AVI
instrumented road segments, traffic incident infor-
mation about TransGuide ATMS incidents, and 911
Police incidents. The user can select from the fol-
lowing three map views:

• Real-Time traffic speed map
• Current traffic incident map
• Current lane closure map
The traffic incident and lane closure maps con-

sist of the current traffic incidents or lane closures

7

8

indicated by yellow warning sign icons overlaid
on the traffic speed map. A current traffic incident
map is shown in Figure 6.

The traffic speed map shows the instrumented
sections of road color coded to indicate the relative
speed of that road section. A green color indicates
that the traffic is flowing normally, yellow indi-
cates that the traffic is slow, and red denotes very
slow speeds. The cyan segments are currently
inactive. When the user selects a section of road
with the mouse, the current speed of that road
segment is displayed above the map, along with a
description of the location and direction of that
segment.

When the traffic incident map or lane closure
map is displayed, selecting one of the icons causes
detailed information about the traffic incident or
lane closure to be displayed. The user can also
view a text list describing all current traffic inci-
dents or lane closures.

2.2.9 Data Server Common Library Design

To simplify the interface between other
processes and the Data Server, a set of common
Data Server Library functions was developed. Data
Generators and Data Consumers use these func-
tions to access Data Server information. The library
consists of functions that allow the Data Generators
to send traffic data, equipment data, and files to the
Data Server and other functions that allow the Data
Consumers to retrieve this data from the Data
Server. Functions are also included to initialize and
terminate communication with the Data Server, as
well to send the Data Generator or Data
Consumer’s status to the Data Server.

2.2.10 Model Deployment Initiative Common
Code Design

As design similarities were discovered in the
various MDI projects, sets of common software
libraries were developed and used across the pro-
gram. These libraries, which became the ground-
work for a common software architecture, provided
several advantages during the initial MDI develop-
ment, as it will during maintenance and future
modifications and additions. Several of the com-
mon processes are customized using configuration
data that are read from a file at start-up. The Data

Server uses common libraries and code to accom-
plish the following functions:

• Data transmission to the Data Server and
requests for data from the Data Server

• Heartbeat status collection and
transmission

• Status logging
• Process start-up and monitoring

2.3 Tradeoff Decisions

Several tradeoff decisions were made during
the design phase of the Data Server. Some decisions
made on the other MDI subsystems also affected
the Data Server design. Major tradeoffs considered
for the Data Server included data distribution
tradeoffs and architecture design tradeoffs.

2.3.1 Data Distribution and Process Breakup
Tradeoffs

Several data distribution techniques were con-
sidered for the Data Server. Of these techniques,
four were used for different types of data distribu-
tion. Each technique has different advantages as
well as disadvantages, and each one was chosen for
its particular application. The techniques are pre-
sented in Table 1.

Figure 6. World Wide Web Current Incident Map

1. The data broadcast is used by the Real-
Time subsystem to transmit real-time traffic
data to a large (and variable) number of lis-
teners located at several different worksta-
tions on a common network.

2. Shared memory is used by the Core Data
Server to store data, which is accessed by
two or more processes located on the same
workstation. An example of these data is
the status data collected by the Data Server
process and read by the MDI overall Status
GUI. Traffic data with a known number of
elements are also stored in shared memory.

3. Data Requests are used by other MDI sub-
systems to send data to, or request data
from, the Data Server. These processes may
or may not be located on the same worksta-
tion as the Data Server.

4. Traffic data with a varying number of data
elements, such as ATMS incidents, 911 inci-
dents and lane closures, are stored in files.
As the number of elements change, the size
of the file changes, without requiring reallo-
cation or waste of memory.

The tradeoff matrix for the different data distri-
bution techniques is shown in Table 1.

2.3.2 Architecture Design Tradeoffs

The Data Server consists of several subsystems
and interface processes. Instead of creating one
large application program to implement all the
subsystems and interfaces, the subsystems and
interfaces were split into several programs. Each
subsystem consists of one or more component, each
of which is a separate UNIX process. The subsys-

9

High,
relies on network.

Reliability/
Maintainability

Very High,
requires careful
access management
(locks, semaphores,
etc.). Does not rely
on network.

Medium,
easy to add new
requests.
Requires sender/
receiver cooperation.
Relies on network.

Broadcast Shared Memory Data Request

High,
data can be
compressed before
transmission. No
handshake protocol
between client
and server.

Speed Very high. Medium,
two messages are
sent for each request
(the request and the
response).

Low.System
requirements

High,
processes must
reside on the
same machine.

Low.

High,
sender is not
impacted by an
increase in
number of
listeners.

Expandability Medium,
as number of
accesses to shared
memory increases,
speed may slow
due to waits.

Medium,
a new process is
spawned for each
connection. Number
of clients limited by
system resources,
network bandwidth.

Medium,
relies on file
system.

Files

Medium,
depends on disk
access time.

Low,
file size adjusts to
amount of data.

High,
limited by available
disk space.

Table 1. Data Distribution Techniques

tem components were designed as individual
processes to increase the reliability of the system.
Hence, if a system has to be modified or added, or
if one process fails, it will not impact the whole
system.

The tradeoff matrix for the architecture design
is shown in Table 2.

2.4 Summary

The Data Server is designed to provide a seam-
less integration with the existing TransGuide opera-
tional environment. The Data Server provides rapid
access to the various types of traffic data that it
stores. Because of its modular design, the Data
Server is flexible, making future additions of Data
Generators or Data Consumers possible.

The Data Server project collects traffic data
from multiple sources and distributes the data to
external applications, such as Kiosks, IVN, and the
Real-Time WWW map. Traffic data sources include

speed data from ATMS sensors, AVI sensors, and
GPS/Theoretical computations; traffic incident data
from the ATMS, 911 police data dispatch system,
and AWARD sensors; equipment data from ATMS
equipment and MDI equipment, as well as sched-
uled lane closures. The traffic data are presented in
an easily readable Real-Time map with color coded
speed ranges. This map can be zoomed to obtain
various levels of detail without sacrificing geo-
graphical accuracy.

The Data Server implementation has shown
that adding and removing applications that pro-
vide and use the traffic data can be done with mini-
mal effort. Additional roadways and equipment are
currently being added to the system by using an
intuitive map generation application developed in
parallel with the Real-Time map. This process
shows that the system can be updated to keep up
with continuing development of the San Antonio
traffic system.

10

Medium.Maintainability High.

One Process Separate Processes

Low,
if an error occurs, the entire
system goes down.

Reliability High,
errors affect only the subsystem
at which they occur.

Low.Flexibility High,
change in one process does not
necessarily affect other processes.

Medium.Expandability High,
easy to add or delete processes.

Table 2. Data Server Architecture Tradeoff Matrix
(Selected technique is highlighted in yellow)

